人工智能未来发展前景将会怎样?

5个月前更新 SanS三石
32 0 0

今年是人工智能集中爆发的元年,用过AI工具的我相信已经无法离开他们了,可以说AI应用已经深入到人类的生产和生活中了,未来的人工智能发展会更加飞速向前,不过要实现AGI应该还有一段很长的路要走吧。做为一个普通人,拥抱变化是最佳解法,这几天看到一篇总结很好的文章,有关23年对世界范围影响较大的AI工具和现象,分享给大家~希望喜欢!

前言:

在今年的 AI 进展方面,重点在于改善现有技术,并未出现类似于去年的 ChatGPT 或图像生成器那样的革命性创新。但是今年是像强大未来(AGI)过渡的中间段。
在 AI 领域最为显著的进展(主要是软件):

人工智能未来发展前景将会怎样?

图像生成

  • Adobe Firefly: Adobe 的 Firefly和 Generative Fill推动了多样化视觉内容的创作,如插画、艺术构思和照片编辑。集成到 Photoshop中的 Adobe Firefly 使 AI 技术普及化,让更多用户能够轻松使用。其发布的文本效果功能也是一个重要进展,它允许用户给文字和短语添加风格或纹理。
  • Midjourney: Midjourney 的 V.5 模型在图像生成领域达成了重要里程碑,展现了更高的效率、连贯性和分辨率。它的最新 alpha 版本,Midjourney V.6,进一步增强了功能,比如更精准地响应用户输入(prompt)、提高了模型的知识水平和简易的文本绘制能力。
  • DALL·E 3: 基于 ChatGPT 的 DALL·E 3简化了图像生成过程,避免了复杂的用户输入(prompt)设置。此外,ChatGPT 还推出了一项功能,帮助用户优化输入内容,并根据反馈调整图像。
  • Shutterstock.AI: 知名库存图片平台 Shutterstock.AI加入了 AI 功能,使用户能将输入内容转换成可授权的图像。Shutterstock 在推动伦理 AI 方面迈出了重要一步,对贡献的艺术家给予认可和奖励。
人工智能未来发展前景将会怎样?

视频生成

  • Stability AI: Stability AI 推出了 Stable Video Diffusion,这是一个具有里程碑意义的视频生成(generative video)模型,可在 GitHub 上开源访问。类似于 AI 图像生成的趋势,Stable Video Diffusion 模型很可能在 AI 生成视频领域发挥核心作用。
  • HeyGen: 这家 AI 创业公司推出了 一款用于语音克隆的工具,能够调整视频中的唇部运动并进行语言翻译。
  • Runway Gen-2:Runway 发布了 Gen-2 模型,使用户仅需通过文本提示、图片或其他视频即可轻松生成完整视频。下面的例子就是一种展示。
  • Pika 和 Pika 1.0: 在首次发布时,Pika 吸引了超过五十万用户,每周生成数百万视频。在 Pika 1.0 中,升级后的 AI 模型使用户能够以多种风格(包括 3D 动画、动漫、卡通和电影)创作和编辑视频。
  • Meta 的像素编解码头像(PiCA):Meta 的 Pixel Codec Avatars(PiCA)模型为视频中的 3D 人脸提供了更加逼真的远程传输体验。
人工智能未来发展前景将会怎样?
runway
人工智能未来发展前景将会怎样?
runway

文本生成

  • Bard 和 Gemini:谷歌的 Bard 为聊天机器人注入了仿人类的情感和情绪。Bard 聊天机器人采用多模态数据集训练,而谷歌的 Gemini 以“最有能力”的 AI 模型身份崭露头角,成为与 OpenAI 的 ChatGPT 齐名的竞争者。
  • Grok:埃隆·马斯克的创业公司 xAI 展现了其对 AI 发展的承诺,并有可能与 OpenAI 竞争。他们推出了“Grok” —— 一款具备幽默感、反叛特质,并能通过 平台获取实时信息的聊天机器人。xAI 承诺,Grok 能回答其他 AI 系统所回避的敏感问题
  • OverflowAI:Stack Overflow 的 OverflowAI 通过提高知识整理效率,使得用户能在 Visual Studio Code 和 Slack 中快速找到 AI 推荐的相关答案。
  • Llama 2:Meta 推出了 Llama 2,这是其开源大语言模型 (LLM) 的升级版,性能更优。Meta 还对这一模型进行了针对对话场景的优化,使其在大多数标准测试中超越了其他开源模型。
  • GPT-4:OpenAI 的 GPT-4 现在能够处理图像输入,生成标题、分类,实现听取和对话互动,还支持实时网络浏览。OpenAI 还进一步扩展了插件支持,促进了一个丰富多彩的开源竞争环境。GPT-4 标志着 OpenAI 向通用人工智能 (AGI) 迈进的新篇章。
  • Mistral 7B:Mistral AI,估值大约 20 亿美元的今年,推出了 Mistral 7B,一个具有挑战性的大语言模型,旨在与 GPT-4 和 Claude 2 竞争。Mistral AI 采用开放技术策略,允许用户免费下载该模型,以促进技术共享和创新。
  • Mixtral 8x7B:Mistral AI 同样推出了 Mixtral 8x7B,这是一个高质量的稀疏混合专家模型(SMoE),具备开放的权重参数,拥有总计 46.7B 参数,这标志着模型在提高真实性和减少偏见方面开放性的一大步。
  • Yi-34B llm: 今年估值达到 10 亿美元的李开复创立的 01.AI 发布了 Yi-34B — 一种开源的神经网络模型,它以远超竞争对手的参数数量取得了优越性能,特别强调了其在成本效益方面的突出表现。

其他进展:
这一部分暂无具体内容,但预示着 AI 领域还有更多激动人心的发展。

  • 任何物体分割模型 (SAM):Meta AI 推出了 SAM,这是一个强大的分割模型,能够在无需额外训练的情况下提取图像中的物体,展示了其出色的适应性。SAM 在大型数据集上的训练证明了它在物体分割方面的高效能力。
  • 直接偏好优化 (DPO):DPO 的出现 标志着一种稳定且高效的方法,用于微调大规模无监督的大语言模型(LLM)和教授文本到图像模型。DPO 能够在不依赖复杂的基于人类反馈的强化学习 (RLHF) 的情况下实现精确控制。
  • Zephyr 直接蒸馏 LM 对齐:Zephyr-7B 是直接偏好优化 (dDPO) 的成果,它为带有 70 亿参数的聊天模型树立了新的标准,通过减少训练量提高了意图识别的准确性。
  • 自主 AI 智能体:自主 AI 智能体的兴起 标志着向高级自主 AI 系统的重大转变。这些 AI 智能体被视为通用人工智能 (AGI) 的雏形,它们能够根据用户的目标自动生成任务和指令,并自主完成直至达成目标。
  • EvoDiff:微软的 EvoDiff 是一个开源 AI 框架,专注于快速且成本效益的蛋白质生成,有望在治疗和工业应用领域带来突破。
  • 稳定音频Stability AI 发布 一款可以根据简单文本提示生成短而高质量音频片段的工具。
  • GPT 商店,版权屏障,ChatGPT 机器人构造器:OpenAI 推出 GPT 商店来销售定制化的 GPT 机器人,版权屏障用于承担版权侵权索赔的法律费用,以及一个无需编程的平台,用于创建定制化的 ChatGPT 版本。
  • Stability AI 开源其大语言模型 (LLM):Stability AI 已开源其模型,包括 StableLM-Alpha 和 Stable Vicuna。这些模型在文本和代码生成方面表现卓越。特别是 Stable Vicuna,它是首个采用人类反馈强化学习 (RLHF) 训练的开源聊天机器人。另外,Stability AI 还推出了 SDXL Turbo,这是一款能实时将文本转换为图像的生成模型

AI 领域里程碑的重要合作

Stability AI 和 Init ML
Stability AI 通过收购了 Init ML,这是受欢迎的编辑应用 ClipDrop 背后的关键团队,其目的是将 Stability AI 的先进技术融入到 ClipDrop 的生态系统中。这次合作已催生了SDXL Turbo 的开发

Runway 和 Getty Images
Runway 与 Getty Images 建立了战略合作伙伴关系,共同推出了一款新的视频生成模型 RGM (Runway 和 Getty Images 联合模型)。这一模型结合了 Runway 的 AI 技术和 Getty Images 庞大的授权创意内容库。这一合作旨在彻底改变内容创作的流程,帮助企业制作符合品牌特色的高质量定制视频。

Snowflake 和 Neeva
作为数据仓库平台的重要玩家,Snowflake收购了 Neeva,这是一家以利用生成式 AI 改善搜索体验而知名的初创公司。Neeva 最近结束了其基于订阅的、无广告的搜索引擎服务。Neeva 的创始人也承认了让用户尝试新搜索引擎的难度。

Shutterstock 和 OpenAI
Shutterstock 和 OpenAI 确定了为期六年的深化合作关系。OpenAI 获得了 Shutterstock 高质量数据的使用权,以此来丰富其模型训练的数据集,包括多种图像、视频和音乐资源。Shutterstock 则继续利用 OpenAI 的技术,推出了 Shutterstock 的 AI 图像生成工具。

AI 法律现状
2023 年的 AI 法律领域正经历着快速变化,面对不断出现的新挑战和持续的争论。关于版权、公司政策及更广泛的监管框架的讨论正在塑造 AI 法律领域的发展方向。以下是今年最重要的法律议题:

欧洲 AI 法规
欧盟推出了全球首个全面的 AI 法规,对 AI 的应用进行规范。这项法规根据 AI 系统潜在的风险进行分类,并据此制定了相应的规定。虽然 AI 法规已经初步达成一致,但其实施面临延迟,预计将于 2025 年开始执行。

具体法规可以查看如下

美国版权局对 AI 创作内容注册的立场
美国版权局明确表示,拒绝对由 AI 算法 Midjourney 创作的图像进行版权登记。这一决定成为先例,表明完全由 AI 创作、无人类参与的艺术作品不适用于版权保护。此外,美国版权局还发布了关于 AI 协助创作作品的指南,明确了人类利用 AI 工具创作的作品可能符合版权保护。该指南指出,需要根据人类在创作过程中的作用是否起到决定性因素来评估这些作品。

“当前的法律体系还没准备好承认由 AI 创作的作品的版权,因为 AI 是基于已有数据学习,这些数据的版权属于其他人,这使得版权归属成为一个挑战。预计通过明年州政府进行的调查,公众的参与将推动这一问题的解决。在缺乏广泛公众参与的情况下,目前独立解决这个问题较为困难。”

McKinsey 近日公布了一幅内容丰富的图表,全面概括了 2023 年人工智能(AI)治理领域内最关键的政策和监管动向。该图表以直观的视觉形式展示了 2023 年对 AI 法律框架塑造做出的显著贡献。

人工智能未来发展前景将会怎样?

AI人工智能第一个联盟形成

Meta和IBM的领导下,来自软件、硬件、非营利、公共和学术部门的数十个组织组成了人工智能联盟,该公司计划开发有助于开放式发展的工具和程序。具体信息如下:

其他信息说明:

大家感兴趣可以去看原文,原文地址如下,译文中还有一部分未例出,因为有些信息目前看来已经过时了。
下面再补充一个信息,是有关AI联盟的事,文中未提及,但是个人认为是23年很重要的事件。

原文的其他更正申明:
Stability AI 开源其 LLM 的提及被排除在信息图表之外,但保留在文章中,强调了其在促进可访问性而不是专注于技术改进方面的重要性。
该信息图最初展示了 xAI 初创公司的成立,现已因不相关而被删除。此外,由于本文重点关注软件,因此未提及 Apple Vision Pro。我们还将 Midjourney V.6 包含在列表中,因为它是最新版本。

原文:https://journal.everypixel.com/

© 版权声明

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...