目前AI已在金融、医疗、安防等多个领域实现技术落地,且应用场景也愈来愈丰富,正在实现全方位的商业化,引发了各个行业的深刻变革,这对加速企业数字化、改善产业链结构、提高信息利用效率等方面都起到了积极作用。与此同时,AI也已全面进入机器学习时代,未来AI的发展将是关键技术与产业的结合。然而随着投资界和企业界对AI的了解逐步加深,AI投融资市场更加理性,投资金额虽然继续增加,但投融资频次有所下降。特别是经过行业的一轮优胜劣汰后,底层技术创业公司以及落地性强的领域如医疗、教育、无人驾驶等创业项目继续受到人工智能领先机构的青睐。
我们推荐德勤的研究报告《全球人工智能发展白皮书》,从AI创新融合的新趋势、AI技术的发展和腾飞、中国在全球AI的地位以及AI如何重塑各行业四大方面,深入阐述了全球AI发展现状及未来。如果想收藏本文的报告(全球人工智能发展白皮书),可以在智东西公众号回复关键词“nc407”获取。
一、AI创新融合新趋势
1、 人工智能正全方位商业化
当前人工智能技术已步入全方位商业化阶段, 并对传统行业各参与方产生不同程度的影响, 改变了各行业的生态。这种变革主要体现在三个层次。第一层是企业变革:人工智能技术参与企业管理流程与生产流程, 企业数字化趋势日益明显, 部分企业已实现了较为成熟的智慧化应用。这类企业已能够通过各类技术手段对多维度用户信息进行收集与利用, 并向消费者提供具有针对性的产品与服务, 同时通过对数据进行优化洞察发展趋势, 满足消费者潜在需求。 第二层是行业变革: 人工智能技术带来的变革造成传统产业链上下游关系的根本性改变。 人工智能的参与导致上游产品提供者类型增加, 同时用户也会可能因为产品属性的变化而发生改变, 由个人消费者转变为企业消费者, 或者二者兼而有之。 第三层是人力变革。 人工智能等新技术的应用将提升信息利用效率, 减少企业员工数量。 此外, 机器人的广泛应用将取代从事流程化工作的劳动力,导致技术与管理人员占比上升, 企业人力结构发生变化。
▲人工智能技术带来的全方位变革
2、 AI全面进入机器学习时代
随着技术的进步和发展, 人类学习知识的途径逐渐从进化、 经验和传承演化为了借助计算机和互联网进行传播和储存。由于计算机的出现, 人类获取知识的途径开始变得更加高效和便捷。在不久的将来, 绝大多数的知识将被机器提取和储存。强大的计算机算法将逐渐获得类人的能力, 包括视觉、 说话的能力和方向感等。
在人工智能众多的分支领域中,“机器学习”(Machine Learning) 是人工智能的核心研究领域之一。包括89%的人工智能专利申请和40%人工智能范围内的相关专利均为机器学习范畴。最初的研究动机是为了让计算机系统具有人的学习能力以便实现人工智能。机器在现有的知识找到空缺, 接着机器效仿人脑并模拟进化, 系统化地减少不确定性,识别新旧知识的相同点, 并完成学习。
▲人工智能各层级图示
人工智能核心是算法 。作为人工智能的底层逻辑, 算法是产生人工智能的直接工具。 从历史的进程来看, 人工智能自1956年提出以来, 经历了三个阶段, 这三个阶段同时也是算法和研究方法更迭的过程: 第一个阶段是20世纪60~70年代, 人工智能迎来了黄金时期, 以逻辑学为主导的研究方法成为主流。 人工智能通过计算机来实现机器化的逻辑推理证明, 但最终难以实现。第二个阶段是20世纪70~90年代,其中, 1974到1980年间, 人工智能技术的不成熟和过誉的声望使其进入“人工智能寒冬”, 人工智能研究和投资大量减少。
1980年到1987年, 专家系统研究方法成为人工智能研究热门, 资本和研究热情再次燃起; 1987年到1993年, 计算机能力比之前几十年已有了长足的进步, 这时试图通过建立基于计算机的专家系统来解决问题, 但是由于数据较少并且太局限于经验知识和规则, 难以构筑有效的系统, 资本和政府支持再次撤出, 人工智能迎来第二次“寒冬”。
第三个阶段是20世纪90年代以后, 1993年到2011年, 随着计算力和数据量的大幅度提升, 人工智能技术获得进一步优化; 至今, 数据量、 计算力的大幅度提升, 帮助人工智能在机器学习, 特别是神经网络主导的深度学习领域得到了极大的突破。 基于深度神经网络技术的发展, 才逐渐步入快速发展期。
▲人工智能技术发展历史
此外, 数据是人工智能底层逻辑中不可或缺的支撑要素, 没有数据针对人工智能的数据处理将无法进行。有了数据挖掘对数据的清晰、 集成、 归约等预处理手段, 人工智能才能拥有足够的数据进行学习。随着人工智能技术的迭代更新, 从数据生产、 采集、 储存、 计算、 传播到应用都将被机器所替代。
▲数据处理的发展阶段
3、 市场对投资回归理性
从科研和学术的范畴到技术创业, 人工智能仅用了几年的时间。这样的转变不仅得益于人们希望新技术解放生产力的要求和政策的扶持, 还离不开资本市场对人工智能的助推。随着资本市场对人工智能认知的不断深入, 投资市场对人工智能的投资也日趋成熟和理性。在过去5年间, 中国人工智能领域投资出现快速增长。人工智能的元年2015年, 投资总额达到了450亿元, 并在2016年和2017年持续增加频次。2019年上半年中国人工智能领域共获融资超过478亿元, 获得了不俗的成绩。
▲中国人工智能投融资变化情况
分析人工智能的投资趋势, 主要分为以下几点:
易落地人工智能应用场景受投资人追捧。近年投融数据显示, 企业服务、机器人、 医疗健康、 行业解决方案、基础组件、 金融领域在投资频次和融资金额上均高于其他行业。从公司层面来看, 全球顶级团队、 资金实力和科技基因更易受到二级市场投资者的青睐。从行业方面来看, 容易落地的新零售, 无人驾驶, 医疗和智适应教育预示着更多的机会, 因此以上领域的公司拥有更多获得投资的机会。
▲中国人工智能各行业投融资频次分布
投资市场开始青睐底层技术创业公司。有别于前期对应用型人工智能公司的投资偏好, 投资市场开始逐渐关注人工智能底层技术的创业公司。做底层技术更易受追捧, 由于天花板高, 这类公司在市场上更加具有竞争力。由于人工智能底层技术在中国的发展仍落后于美国的, 而底层技术是人工智能发展的重要支持, 随着人工智能在中国的进一步发展, 底层技术的投资的热度将持续增长。
获投A及B轮公司占比仍然最高, 战略投资开始逐渐增多。目前全国有超过1,300家人工智能企业获得风险投资投资。其中A轮以前的获投频次占比开始逐渐缩小, 投资人对A轮仍然保持着较高的热情, 目前是获得投资频次最高的轮次。战略投资在2017年开始爆发。随着人工智能市场板块的逐渐成熟, 以互联网巨头为主的领军企业将目光投向了寻求长期合作发展的战略投资。这也预示着人工智能行业与产业在资本层面的战略合作开始增多。
▲2013-2019年上半年人工智能投资轮次
巨头投资人工智能布局在业务关联产业上下游。在人工智能发展的热潮中, 嗅觉敏锐的互联网巨头也开始了自己的战略布局。以科技部、 中科院国科控股、 地方财政局和经信委等机构扶持的科技投资基金以及阿里巴巴、 腾讯、 百度、 京东为首的互联网巨头已经将投资渗透到人工智能的各个板块。从领域来看, 各投资机构选择投资的项目均处于其未来产业战略布局的上下游, 而这些获投项目也推动着国家人工智能发展战略的落地。例如阿里巴巴投资重点主要在安防和基础组件, 获投的代表性公司包括商汤、 旷视和寒武纪科技等。腾讯投资的重点主要集中在智慧健康、 教育、智慧汽车等领域, 代表性的公司包括蔚来汽车、 碳云智慧等企业。百度投资的重点主要在汽车、 零售和智慧家居等领域。京东投资重点聚集在汽车、 金融和智慧家居等领域。而依托中科院体系的国科系则在与芯片、 医疗、 教育等人工智能技术和应用领域均有涉足。随着数字化在各行业中的转型和融合, 人工智能在无人驾驶、医疗健康、 教育、 金融、 智能制造等多个领域都将成为巨头的必争之地。
▲AI领先企业主要投资领域
作为未来的新型行业, 人工智能企业呈现出高增长的特征。我们根据不完全的公开信息, 以及德勤高科技高成长500强榜单内的人工智能企业进行增长率梳理, 筛选出了50家高增长企业。
4、 城市逐渐成为AI创新融合应用主战场
城市是承载AI技术创新融合应用的综合性载体, 也是人类与AI技术产生全面感知的集中体验地。过去几年, 全球各地的主要城市都在AI技术的发展中发挥了差异化作用, 构建了各自的生态体系,并在赋能产业应用、 助力区域经济发展方面实现初步效果, 掀起了人类对新一轮产业革命的思考、 认知和行动。随着AI应用纷纷落地于城市层面, 城市逐渐成为AI创新融合应用的主战场。
虽然全球各地AI技术的关键成功要素各有差异, 但总体而言都构建了有利于技术与城市融合的生态发展体系。我们对超过50个AI技术细分应用行业、 100多个AI技术相关的大学及研究机构、 200多家头部企业、 500多个投资机构、 7,000家AI企业、 10万名AI领域核心人才的持续跟踪观察, 总结了以城市为主体的AI技术及产业生态体系的特点、 框架及发展路径。经过综合考虑, 我们认为一个城市AI技术创新融合应用程度可主要通过考察以下五大方面:
顶层设计:即AI产业扶持政策、 特殊立法、 数据开放政策及开放程度等 ;
算法突破:即AI芯片等人工智能核心软硬件的研发核心环节等 ;
要素质量:即AI领军人物、 资本支持力度、 科学家薪酬水平、 行业会议影响力等 ;
融合质量:即前沿学科连结性(AI:+Cloud、 +Blockchain、 +IoT、 +5G、+Quantum Computing等前沿技术)、创新主体多元性(头部企业、 学术机构等)、 文化多样性等 ;
应用质量:即金融、 教育、 医疗、 数字政务、 医疗、 无人驾驶、 零售、 制造、 综合载体发展等 。
根据全球城市在上述五项指标中的评估表现, 德勤评选出最具代表性的三大类共计20个全球AI创新融合应用城市:
▲2019年20个全球AI创新融合应用城市
5、 AI支持体系不断发力
作为推动人工智能技术进步的“三驾马车”, 算法、 数据和计算力在过去的5-10年间不断创新。在算法方面, 人类在机器学习的算法上实现了突破, 特别是在视觉和语音技术方面的成就尤为突出。在数据方面, 移动互联网时代的到来使数据量迎来了爆炸式增长。
人工智能算法模型经过长期发展, 目前已覆盖多个研究子领域。以机器学习为例, 其核心算法包括最小二乘法、 K近邻算法、 K均值算法、 PCA分析法核心
模型包括线性回归、 逻辑回归、 判定树、 聚类、 支持向量机等。主流算法模型库使得常见算法模型得到了高效实现:Caffe框架、 CNTK框架等分别针对不同算法模型进行收集整合, 在算法的开发利用中有很高的实用性。随着大数据技术的不断提升, 人工智能赖以学习的标记数据获得成本下降, 同时对数据的处理速度大幅提升。宽带的效率提升。物联网和电信技术的持续迭代为人工智能技术的发展提供了基础设施。2020年, 接入物联网的设备将增加至500亿台。代表电信发展里程的5G的发展将为人工智能的发展提供最快1Gbps的信息传输速度。
在计算力上, 得益于芯片处理能力提升、 硬件价格下降的并行使得计算力大幅提升。截至目前, 全球人工智能的计算力主要是以GPU芯片为主。但随着技术的不断迭代, 如ASIC、 FPGA在内的计算单元类别将成为支撑人工智能技术发展的底层技术。
▲中国人工智能芯片市场规模与增速预测(2016-2020)
6、 顶层政策倾斜力度持续增加
人工智能对社会和经济影响的日益凸显, 各国政府也先后出台了对人工智能发展的政策, 并将其上升到国家战略的高度。截至目前, 包括美国、 中国和欧盟在内的多国和地区颁布了国家层面的人工智能发展政策。
▲各国针对人工智能出台的政策
时至2019年, 中国政府继续通过多种形式支持人工智能的发展。此前, 中国形成了科学技术部、 国家发改委、 中央网信办、 工信部、 中国工程院等多个部门参与的人工智能联合推进机制。从2015年开始先后发布多则支持人工智能发展的政策, 为人工智能技术发展s和落地提供大量的项目发展基金, 并且对人工智
能人才的引入和企业创新提供支持。这些政策给行业发展提供坚实的政策导向的同时, 也向资本市场和行业利益相关者发出了积极信号。在推动市场应用方面, 中国政府身体力行, 直接采购国内人工智能技术应用的相关产品, 先后落地多个智慧城市、 智慧政务等项目。
从战略层面来看,《新一代人工智能发展规划》 是中国在人工智能领域进行的第一个系统部署文件, 具体对2030年中国新人工智能发展的总体思路、 战略目标和任务、 保障措施进行系统的规划和部署。规划根据中国人工智能市场目前的发展现状分别对基础层、 技术层和应用层的发展提出了要求, 并且确立中国人工智能在2020、 2025以及2030年的“三步走” 发展目标。
7、 全球AI市场超6万亿美元
人工智能将提升社会劳动生产率, 特别是在有效降低劳动成本、 优化产品和服务、 创造新市场和就业等方面为人类的生产和生活带来革命性的转变。全球范围内越来越多的政府和企业组织逐渐认识到人工智能在经济和战略上的重要性, 并从国家战略和商业活动上涉足人工智能。全球人工智能市场将在未来几年经历现象级的增长。我们预测未来2025年世界人工智能市场将超过6万亿美元, 2017-2025年复合增长率达30%。
▲全球人工智能市场规模
从行业来看, 传统市场规模较大的领域将继续领跑, 2030年制造业, 通信、传媒及服务, 自然资源与材料将分别以16%, 16%, 14%占据前三名。其中,庞大的制造业企业已经开始加速数字化转型, 推动智能管理、 智能工厂、 智能物流等全方位智能化, 因而制造业也是其中增速最快的领域。同时, 在新领域
中, 教育领域人工智能技术的应用也开始向学习全过程渗透, 增长速度也是不容忽视。
▲人工智能市场规模(按行业分类)
我国的人工智能核心产业规模目前已超过1,000亿元, 预计到2020年将增长至1,600亿元, 带动相关产业规模超一万亿元。 其中北京、 上海、 浙江、 江苏、 广东的人工智能相关产业规模位于所有省份和直辖市前列, 预计2020年分别可达到1,400亿、 1,300亿、 2,700亿、 1,000亿和2,800亿。
以上海为例, 上海自推出《关于本市推动新一代人工智能发展的实施意见》 以来, 人工智能产业发展加速, 2019年相关产业规模可达到1200亿元。依托长三角的区位优势, 上海人工智能企业在人才、 资本方面都能获取到充足且优质的资源, 企业集群带来的效益提升显著,有利于公司和行业规模的持续扩大。
8、京津冀、 长三角、 珠三角AI企业云集
人工智能技术进入商业应用阶段后, 已经逐步在众多行业得到应用, 其发展前景受到政府、 企业等社会各方的普遍认可, 毫无疑问已经成为影响经济发展的重要力量。
各地政府为推动产业升级, 实现经济新旧动能转换, 纷纷颁布与人工智能产业相关的产业规划指导意见, 提供税收优惠、 资金补贴、 人才引入、 优化政务流程等措施优化营商环境, 吸引有实力的企业入驻,同时培育本地人工智能企业。
▲各城市人工智能初创企业融资金额(2015年-2019年上半年)
初创企业在新技术的研发与商用方面承担开拓者的作用, 初创企业获得的融资金额在一定程度上代表了该地区在新技术的发展前景。人工智能技术已经步入商用阶段, 其应用范围已经拓展至金融、 交通、医疗、 生产制造等多方面, 初创企业获得更多的融资金额意味着更多的资金将推动人工智能渗透更多行业。
在初创企业获得的融资金额方面, 自2015年以来, 北京、 上海人工智能初创企业融资金额均超过500亿元, 分别为1,599亿元与582亿元。这是因为北京、上海聚集中国大部分的人工智能初创企业, 企业技术实力雄厚, 同时客户对新技术的接受度更高, 因而拥有更为广阔的应用市场。
科研院校与机构实力差异明显:北京实力雄厚, 上海依靠高校, 深圳依靠企业, 杭州相对单一。科研院校与机构是人工智能技术研发的重要场所。中国人工智能论文数量自2014年超过美国, 并且远超其他国家,这与人工智能科研院校与机构的快速发展密不可分, 同时, 科研院校与机构也是人工智能专利申请的主要力量。因而, 分析各城市人工智能科研院校与机构能够帮助了解该城市的技术力量。
▲各城市人工智能人才数量占比
▲人工智能应用技术热点排名
快速成熟的计算机视觉技术:计算机视觉是计算机代替人眼对目标进行识别、跟踪和测量的机器视觉。计算机视觉的应用场景广泛, 在智能家居、 语音视觉
交互、 增强现实技术、 虚拟现实技术、电商搜图购物、 标签分类检索、 美颜特效、 智能安防、 直播监管、 视频平台营销、 三维分析等方面都拥有长足的进
步。在该领域科技巨头和独角兽聚集,代表性的企业和科研机构包括百度、腾讯、 海康威视、 清华大学、 中科院等。百度开发了人脸检测深度学习算法PyramidBox;海康威视团队提出了以预测人体中轴线来代替预测人体标注框的方式, 来解决弱小目标在行人检测中的问题。腾讯优图和香港中文大学团队在CVPR2018提出了PANet, 在MaskR-CNN的基础上进一步聚合底层和高层特征, 对于ROI Align在多个特征层次上采样候选区域对应的特征网格, 通过智适应特征池化做融合操作便于后续预测。此外, 上海云从科技、 深兰科技、七牛在内的计算机视觉的创新企业在计算机视觉方面都拥有领先技术。
巨头必争的语音识别技术:语音识别通过信号处理和识别技术让机器自动识别和理解人类的语言, 并转换成文本和命令。其应用场景涉及智能电视、 智能车载、 电话呼叫中心、 语音助手、 智能移动终端安、 智能家电等。在语音识别技术方面, 百度、 科大讯飞、 搜狗等主流平台识别准确率均在97%以上。与此同时, 包括上海云知声在内的新兴创业企业在语音识别行业占有一席之地。科大讯飞拥有深度全序列卷积神经网络语音识别框架, 输入法的识别准确率达到了98%。搜狗语音识别支持最快400字每秒的听写。阿里巴巴人工智能实验室通过语音识别技术开发了声纹购物功能的人工智能产品。
自主无人系统技术落地在望:由于AI和机器学习的不断进步, 无人车, 无人机以及医疗机器人的技术都得到了显著的发展, 其根本原因归功于自主无人系统算法的支撑。深度学习已经证明具有出色的能够处理复杂任务的能力。现代计算设备, 比如图形处理单元(GPUs) 和计算框架如Caffe, Theano和Tensor Flow有助于设计者和工程师建立具有创新性的无人自主系统。阿里巴巴人工智能实验室开发单车智能系统, 实现了全场景、全天候的厘米级定位。百度的无人驾驶技术包含障碍物感知、 决策规划、 云端仿真、 高精地图服分、 销到端的深度学习(End-to-End) 等五大核心能力。地平线推出了针对自动驾驶的深度学习处理器IP及其重点面向自动驾驶领域的平台。在产业应用方面, 上海西井科技已经在无人货运方面进行了探索。
人工智能自适应学习技术日趋成熟:作为教育领域最具突破的技术, 人工智能自适应学习(Intelligent AdaptiveLearning) 技术(以下简称智适应学习), 模拟了老师对学生一对一教学的过程, 赋予了学习系统个性化教学的能力。和传统千人一面的教学方式相比,智适应学习系统带给了学生个性化学习体验, 提升了学生学习投入度、 提高了学生学习效率。智适应学习技术在美国和欧洲使用时间超过十年, 各年龄段都有大量用户使用, 累积用户超过一亿。产品和技术方面都打磨的比较完善。相对来说, 智适应学习技术在国内积累的数据量稍有落后, 处在初步发展阶段。优势在于, 中国人口基数大、 发展速度快, 未来有望后来者居上。在国内,以松鼠AI为代表的智适应教学企业在遗传算法、 神经网络技术、 机器学习、 图论、 概率图模型、 逻辑斯蒂回归模型、知识空间理论、 信息论、 贝叶斯理论、知识追踪理论、 教育数据挖掘、 学习分析技术等都实现了技术积累。
2、 人工智能开放平台建设稳步推进
广阔的产业及解决方案市场是中国人工智能发展的一大优势。以上优势的形成除了得益于大量的搜索数据、 丰富的产品线以及广泛的行业提供的市场优势,还因为各大国内外的科技巨头对开源科技社区的推动, 帮助人工智能应用层面的创业者突破技术的壁垒, 将人工智能技术直接应用于终端产品层面的研发。从行业来看, 人工智能已经在医疗, 健康, 金融, 教育, 安防等多个垂直领域得到应用。
随着人工智能技术的商用加快, 包括科技巨头和新兴人工智能创业公司形成了自己的技术优势。为更大程度的利用技术优势扩大自身的商业优势, 以及扶持人工智能行业的发展, 技术领先的人工智能企业开始构建自己的人工智能开放平台。
人工智能平台是提供构建人工智能应用的工具。这些工具结合了智能、 决策类算法和数据, 使开发者可通过平台创建自己的商业解决方案。一些人工智能平台提供预设的算法和简易的框架, 人工智能平台具备“平台即服务”(PaaS)的功能, 可提供基础的应用开发;一些则需要开发者自行开发和编程。这些算法可以功能性的支持图片识别、 自然语言处理、 语音识别、 推荐系统和预测分析等一系列的机器学习的相关技术。
人工智能开放平台的搭建旨在打造从源头技术创新到产业技术创新的人工智能产业链。开放的平台连接的产业链的两端。一方面它可以连接了开发者和一些研究机构。另一方面可以连接许多下游的企业, 比如一个以图像识别为主的人工智能开放平台, 可以将相关技术能力开放给希望在图像识别领域开辟业务的创业团队。
▲全球人工智能应用技术专利占比(截至2018年上半年)
阶段一:近期, 超越人类的人工智能技术
从IBM DeepBlue到OpenAI Five, 小到棋牌、 辩论、 电子竞技, 大到医疗、 教育领域,“人机大战” 兼具验证企业技术实力和推动人工智能科普引发更多受众关注的双重任务, 正成为各领域验证人工智能技术成熟与否的重要形式。在2015年, 微软和谷歌研发出超过人类技能的图像识别技术。百度研发出超过人类能力的语音识别技术。据世界知识产权统计, 人工智能应用技术中, 计算机视觉(computer vision) 以49%的占比和24%的增速成为2013年至2016年申请专利注册中最热门的技术。依次分别为占比14%的自然语言处理(NLP)和占比13%的语音处理(speechprocessing)。在计算机视觉的细分类别中, 生物识别(biometrics) 和场景理解(scene understanding) 分别以年均31%和28%的增速排名前列。语音处理的细分领域中, 语音识别(speechrecognition) 和声纹识别(speakerrecognition) 的增速均达到12%。在教育领域, 与人类老师相比, 如今的智适应教育技术在教学效果、 用户体验和测试分数等多个方面已经比肩甚至超过人类。目前包括Knewton、 松鼠AI、 Realizeit、 ALEKS在内的国内外智适应教育企业以均通过“人机大战” 形式对人工智能教育技术与人类教授的
做出了实验型的对比。
计算机视觉 。计算机视觉是眼和脑的结合, 包含成像、 感知与理解。 计算机视觉的能力现今已经超越了人类。 特别是在人脸识别、 图像分类等众多任务中, 计算机视觉能比人类视觉完成的更优秀。 在感知上, 机器已比人眼更加敏锐, 能取得比人眼更多的信息, 如图像准确的深度信息, 图像识别率比人类更高; 此外, 机器在理解层面, 某种意义上也能模仿人类作出一些有创造性的活动。 从2016年ILSVRC的图像识别错误率已经达到约2.9%, 远远超越人类的5.1%, 其挑战项目包括物体检测(识别)、 物体定位、 视频中目标物体检测三大部分。 从训练数据来看, 计算机视觉依托了大量的数据且不受人类限制。 由深度学习驱动的计算机视觉现已超越人类, 主要在于深度学习是由纯数据驱动, 不再受限于人类的意志。 机器视觉在某种意义上进行的是基于数据的区别于人的理解活动。
语音识别 。语音识别技术在20世纪50年代诞生于贝尔实验室。在20世纪80年代末, 卡耐基梅隆大学推出了第一个高性能的非特定人、 大词汇量连续语音识别系统值得一提的是, 汉语语音识别先英语一步超越人类平均水平。2015年, 百度表示百度汉语语音识别技术词错率低于人类平均水平。2018年12月, 依图短语音听写的字错率(CER) 仅为3.71%,大幅提升了语音识别技术的准确率。随着时间的推移, 目前语音识别技术的准确率仍在不断提升。语音识别技术这种“机器感知” 类的技术目前已经相对成熟, 制约语音交互发展的更多原因在语义理解这种“机器认知” 的部分, 这一部分受限于训练方式、 样本标记数据量、 计算量等多个方面。
▲无人驾驶技术分布
依据规则和评价方法的明确程度、 特殊情况频率出现高低以及训练数据的规模三个评判标准来衡量, 无人驾驶技术尚未像图像识别和语音处理一样达到或者超过人类的能力范围。而无人驾驶技术尚未能够达到人类的判断力。
“完全的无人驾驶汽车(L4-L5级) 市场成熟前, 业界首先必须做到以下三点, 第一是汽车必须有360度全方位感知能力, 包括LiDAR、 光学传感器和毫米波雷达等;第二是汽车必须配备高精度数字地图, 定位精度必须做到10cm以内;第三是市场必须建立一个车辆、行人都认知并接受的交通规则或避让准则, 而且, 车辆必须拥有类似人类的感知推理决策能力, 因为人类很可能会不遵守交通规则或表现得犹豫不决、 或进或退。” 与此同时, 无人驾驶的发展并不是单纯的技术发展, 它还需要法律法规, 意识甚至是包括保险和政府的基础设施建设等外围的整体配套支撑。”
因此, 无人车替代其他汽车的过程是漫长的循序渐进的, 在这个过程中必须优先考虑无人车与人类司机共存的情况。
人工智能医疗应用欠缺可行的规则和标准 。依据规则和评价方法的明确程度、 特殊情况频率出现高低以及训练数据的规模三个评判标准来衡量, 人工智能医疗在仍然处于发展中期, 要实现完全替代医生的能力, 还需要很长一段路要走。以智能诊断为例, 人工智能帮助进行辅助诊断在医疗责任认定方面也存在问题和挑战。用户在使用医疗虚拟助手表达主诉时, 可能会漏掉甚至错误地进行描述, 导致虚拟助手提供的建议是不符合用户原本的疾病情况的。
▲强人工智能代表公司及研究概况
据《智能架构》 书中描述, 当今AI理领域的商业和研究专家, DeepMind首席执行官Demis Hassabis, 谷歌AI首席执行官Jeff Dean和斯坦福人工智能负责人李飞飞等预测的平均值, 强人工智能时代可能需要到2099年实现。
虽然以上的预测只是简单的猜测, 但从这些预测中的各种偏差中, 我们可以看出强人工智能的实现仍然需时日。然而, 为了实现强人工智能。许多来自大型科技公司和各类小公司的研究团队正在为构建强人工智能做出贡献。如谷歌DeepMind和谷歌研究都采取了具体的措施来实现强人工智能, 如PathNet(训练大型通用神经网络的方案) 和evolutionary architecture searchAutoML(图像分类寻找良好神经网络结构的方法)。
此外, 包括特斯拉创始人埃隆·马斯克创立、 亚马逊Web Services部分支柱的OpenAI也在以强人工智能为目标进行大量研究, OpenAI还创建了两个特殊的任务:“体育馆” 和“宇宙”, 以测试正在开发的强人工智能的技能。
三、中国在全球AI地位
本次人工智能浪潮以从实验室走向商业化为特征, 其发展驱动力主要来自计算力的显着提升、 多方位的政策支持、 大规模多频次的投资以及逐渐清晰的用户需求。尽管中国人工智能产业发展迅速, 2019年人工智能企业数量超过4,000家, 位列全球第二, 在数据以及应用层拥有较大的优势, 然而在基础研究、 芯片、 人才方面的多项指标上仍与全球领先地区有一定的差距。